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a b s t r a c t

Themagnetohydrodynamic time-dependent von Karman swirling electrically conducting viscousfluidflow
having a temperature-dependent viscosity due to a rotating disk impulsively set into motion is considered
in this study. Alternative to the finite-difference methods frequently used to solve this flow, we propose
here a better technique based on the spectral Chebyshev collocation in the direction normal to the disk and
forwardmarching in time.When applied to the unsteadymhd flow in consideration, the devised numerical
scheme is capable of generating the settlement of the flow into thewell-known steady state for large times.
The energy equation that incorporates the effects of viscous dissipation and Joule heating, and also coupled
with theNaviereStokes and continuity equations, is also treated by themethod and the physical parameters
of paramount interest as such the radial and tangential skin friction coefficients, the torque and the rate of
heat transfer from the disk surface are numerically calculated that are shown to approach their steady state
counterparts for the entire family of magnetic interaction and viscosity variation parameters.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

A great deal of numerical solution methods has been developed
recently to tackle the unsteady flowmotion relevant tofluid dynamics
phenomena. Due to its simplicity, finite-difference methods are
generally preferredwhile simulating theflow field. A better technique
is suggested in the present study based on the spectral Chebyshev
collocation. Its advantages over the classical finite-differencemethods
have been highlighted with a direct application of the method to the
numerical solution of the three-dimensional unsteady problem of
rotating disk von Karman fluid flow having a temperature-dependent
viscosity with the hydromagnetic, viscous dissipation and Joule heat-
ing effects taken into consideration.

A large class of fluid flow phenomena is described by the
governing time-dependent equations of motion, see for instance
[1]. The time evolution of the physical phenomenon needs to be
conceived by solving numerically the fluid equations, particularly
if the velocity and temperature field is not decoupled, since these
equations have no analytical closed-form solutions in most cases.
The governing equations generally consist of partial differential
equations of mass, momentum, angular momentum and energy
conservation depending on the property of the phenomenon.

Several numerical formulations based on different discretization
methods, such as finite differences, finite element, and spectral
methods, have been proposed to compute the fluid dynamics
problems, as in the works of [2e4]. The most common approach for
son SAS. All rights reserved.
approximating the derivatives is the finite-difference methods [5].
Different types and orders of finite-differencemethods are available
as cited in the book [6]. Applying conventional first-order finite-
differencemethods like the first-order upwind results inmonotonic
and stable solutions, but they are also strongly dissipative causing
the solution of the strongly convective partial differential equations
to become smeared out and often grossly inaccurate. On the other
hand higher-order difference methods, e.g. central, Lax-Wendroff,
QUICK, etc. are less dissipative but are prone to numerical insta-
bilities, which introduce oscillations across regions of large gradi-
ents of the variables as discussed in [7,8]. CrankeNicolson method
is a favorably popular method for solving parabolic equations
because it is unconditionally stable and second order accurate [9].
One drawback of it is that it responds severely to jump disconti-
nuities in the initial conditions or to the differences between the
initial and boundary conditions with oscillations which are weakly
damped and therefore may persist for a long time. A selection of
methods were later presented to reduce the amplitude of these
oscillations as outlined in the studies of [10e12].

The same non-physical numerical oscillations were encountered
while solving the unsteady rotating disk fluid flow problems, initially
posed by [13], in [14,15] using a finite difference numerical integra-
tion procedure in conjunction with the implicit CrankeNicolson
solver. It appears that the difficulty is inherent to the other unsteady
flow problems in fluid mechanics, see for example [16e18]. A fast
solution for this numerical problem is generally achieved by using
a proper coordinate transformation as suggested by [19]. However,
besides the equations to be solved getting complicated, this even
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does not remedy the problem completely, since the physical domain
is infinite, imposing the asymptotic conditions at a finite distance
greatly affects the accuracy of the numerical solution, as pointed
out in the research of [14,20]. Therefore, the existing numerical
procedures in the literature for the unsteady calculations do the
computations in the transformed region up to a predetermined finite
time and switches back to the physical domain for the calculation of
the rest of the solution in the time domain.

The prime objective of the current work is to present a numerical
scheme for the unsteady mhd flow problem as set out in [15].
A straightforward approach is the essential target of the study which
easily overcomes the aforementioned difficulties and particularly
avoids the unwanted numerical oscillations due to the differences
between the initial and boundary conditions. To serve to this purpose,
Chebyshev polynomials are employed to approximate derivatives
in the direction normal to the body surface. Having linearized the
nonlinear terms in the governing equations via the usual Newton
linearization, the spectral collocation implemented in thisway is then
furnished with an implicit time differencing for the unsteady terms
in the governing equations. The method is later used to solve the
magnetohydrodynamic von Karman swirling flow equations gov-
erning the motion of the unsteady incompressible and conducting
viscous fluid flow over a rotating disk possessing a temperature-
dependent viscosity. Another motivation of the present work is
to investigate the influences of viscous dissipation and Joule heating
terms for the considered flow, which were omitted in [15]. The
continuity, NaviereStokes and energy equations governing the
velocity and temperature fields are hence strongly coupled. Numer-
ical oscillations and diminishing of the infinite boundary for large
times inherent to the finite-difference techniques are no longer
present in the method devised. Finally, the time evolution of
some parameters of physical importance influenced by the presence
of a uniform external normally applied magnetic field, viscous dissi-
pation and Joule heating together with the variation of viscosity with
temperature has been obtained using the current method.

The following procedure is adopted in the rest of the paper. The
implicit spectral numerical scheme is presented in Section 2. Appli-
cation of the method is implemented in Section 3 to the electrically
conducting magnetohydrodynamic unsteady von Karman rotating
disk fluid flow equations strongly coupled with the energy equation
owing to a temperature-dependent viscosity assumption. Section 4
contains results and discussions of the numerical presentations
including those of physically important parameters. Finally, conclu-
sions are drawn in Section 5.
2. The numerical method

Unlike to the finite-difference techniques as employed in
[15,21,22], we propose, for the problem at hand, a better algorithm
here, known also as the fully implicit time-stepping method, see
for instance [23e25]. To remind the basics of the method, we
consider the system of partial differential equations,
vu
vt

þ N1ðu; TÞ ¼ 0;

vT
vt

þ N2ðu; TÞ ¼ 0;

(1)

valid inside a domain D, accompanied with the following initial and
boundary conditions

uðt ¼ 0; zÞ ¼ u0ðzÞ; Tðt ¼ 0; zÞ ¼ T0ðzÞ; z˛D;
uðt; zÞ ¼ aðtÞ; Tðt; zÞ ¼ bðtÞ; ðt; zÞ˛ðRþ � vDÞ;
where (u, T) ¼ (u(t, z), v(t, z), w(t, z), T(t, z)) with z being a normal
coordinate in the direction perpendicular to the motion and, N1 and
N2 in equations (1) are nonlinear partial differential operators akin to
theNaviereStokes and energy operators arising inmany applications
of science and engineering. The nonlinear terms may contain some
significant parameters like the Reynolds number, Prandtl number,
magnetic interaction parameter, viscosity variation parameter and
so on.

Thereareanumberofnumericalprocedures todiscretizesystem(1).
The most frequently used are the classical explicit or implicit finite-
difference techniques. But nomatter the type of the differencing, the
resultingnumerical algorithmgives rise to numerical oscillations due
to the reason that the initial data and boundary conditions in (2)may
possiblyconstitute adiscontinuity tobeexemplified later inSection4.
This fact was utterly expressed in the numerical studies of the refer-
ences cited here, in which the numerical oscillations were often
reported during the numerical simulation of the unsteady rotating
disk flows, see for instance [14,20,15,21]. The cousins of numerical
methodsbasedon thefinite-difference approximations of derivatives
as presented in the book of [6] are also susceptible to the same
difficulty. A solution for this numerical problem is generally accom-
plished by means of a proper coordinate transformation, such as

h ¼ z
2

ffiffi
t

p ; (2)

as also suggested in [19] (notice that this transformation does
preserve the semi-infinite physical domain). However, although the
resulting equations need to be solved in the infinite domain

0 � z < N; tR0;

during the numerical computations z is fixed at a finite distance, and
due to the suggested coordinate transformation in (2), this finite
domain is diminishedwith the progression of time and greatly affects
the accuracy of the numerical solution of the problem at hand. In
addition to this, the transformation given in equation (2) yields
nonsimilar system of equations adding both the vertical coordinate h
and time t into the transformed equation system, with h tending to
infinity away from the wall. One can refer to [15,20] for the trans-
formed equations. To cope with these deficiencies, and obtain the
unsteady solution at one go without introducing further nonsimilar
and complicating parameters into equations, we propose here to use
spectral Chebyshevmethod, see [4]. In compliancewith this purpose,
the truncated semi-infinite physical domain of computation is
mapped first onto the interval h ˛ [�1, 1] with a suitable trans-
formation h ¼ f(z). A forward time differencing for the derivative of
velocity u is appropriate at this stage in the form

vu
vt

¼ ujþ1 � uj

Dt
;

with a similar time discretization for the temperature T. Taking into
account the advantage of fully implicit schemes, the nonlinear
terms in (1) are imposed at the time t þ Dt which results in N(ujþ1,
Tjþ1) terms being present. Next, these nonlinear terms are linear-
ized with the usual Newton linearization technique such that the
time-discrete flow velocities and temperature are written by

uj ¼ uðnÞ
j þ duj;

Tj ¼ TðnÞj þ dTj
(3)

where uj
(n) and T j

(n) are to denote the values of uj and Tj at the
iteration number n and, duj and dTj are small correction terms.
Usually this method is used for steady problems, in which the
process of successive approximations is continued until the relative
differences of the physical quantities between two successive
iterative steps are smaller than a given error. It should be remarked
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that such a condition can also be set at the time increment to be
evaluated with the known data picked up from the previous time
step. As a result, the nonlinear operators in (1) are substituted by
their linearized counterparts.

A Chebyshev collocation based on the well-known Chebyshev
polynomials is later employed in the wall normal direction h in
such a way that the quantities are collocated at the Gauss points

cos
�
kp
N

�
; k ¼ 0;1;.;N;

where N denotes the number of collocation points used. The
spectral Chebyshev collocation method enables one also to repre-
sent a derivative of a quantity in terms of the values of that quantity
in the whole domain of interest, see [4]. In view of the above
remarks, system (1) can be cast into a matrix form

AdUjþ1 ¼ R; (4)

in which A ((4N þ 4) � (4N þ 4) square matrix) and R ((4N þ 4) � 1
column vector) consist of the known values at the nth iteration, and
dUjþ1 is an (4Nþ 4)� 1 columnvector showing the corrections at the
instant of computation for (u, v,w, T). Thematrix system (4) needs to
be modified due to the boundary constraints (2). With proper initial
approximationsu(n) to the variables (which can be assigned from the
previously converged solutions) at each time step, the sparse matrix
system (4) is eventually solved with an LU matrix factorization
technique. The convergence criterion is to force the correction terms
dU in (4) to lie within a preassigned small tolerance.

More details of the integration scheme without the time deriv-
atives (steady state) can be found in [26]. We should emphasize that
the initial guessesmentioned above are taken as zero initially, which
were found to be perfectly capable of generating the results of this
study for the entire family of parameters considered.

3. Formulation of the problem

The concern here is with the three-dimensional, unsteady mhd
flow of an incompressible, viscous electrically conducting fluid over
an infinite disk rotating with a constant angular velocity U about
its axis of rotation z. The flow is influenced by the presence of an
externally applied uniform normal magnetic field. The governing
equations ofmotion arenon-dimensionalizedwith respect to a length
scale L ¼ re*, velocity scale Uc ¼ LU, time scale L/Uc and pressure scale
rUc

2, where r is the fluid density. Such a dimensionless analysis leads
to a global Reynolds number Re ¼ ðUcLÞ=n ¼ R2, where R is the
Reynolds number based on the displacement thickness d ¼ ðn=UÞ12, n
being the kinematic viscosity. Thus, relative to the non-dimensional
cylindrical polar coordinates (r, q, z), the full time-dependent, conti-
nuity, NaviereStokes, energy and generalized Ohm's law equations
governing the conducting viscous fluid flow are given by,

V$u ¼ 0; (5)

vu
vt

þ ðu$VÞu ¼ �Vpþ 1
R2

V$ðmVuÞ þ J� B; (6)

vT
vt

þ u$VT ¼ 1
PrR2

V2T þ Ec
m

r2R2
½u2z þ v2z � þ Ec

M
r2
½u2 þ v2�; (7)

J ¼ s½E þ u� B�: (8)

The present analysis assumes that the fluid lies in the z� 0 semi-
infinite space. In the above equations (5)e(8), V2 is the usual Lap-
lacian operator in cylindrical coordinates. It should be noted that the
viscous dissipation and Joule heating effects are taken into account in
the energy equation (7), which were disregarded in the study of [15].
Pr ¼ ðmNcpÞ=kN is the Prandtl number, Ec ¼ r2=cpðTw � TNÞ is the
Eckert number (we define it like this, since it is related to the Eckert
number found in the heat transfer literature), cp is the specific heat at
constant pressure, k is the thermal conductivity (N denoting a free-
streamvalue). The components of the flow velocityu are (u, v,w), the
pressure is p and T is the fluid temperature such that the surface of
the rotating disk ismaintained at a uniform temperature Tw. Far away
from the wall, the free stream is kept at a constant temperature TN.
As for the velocities, no-slip condition is imposed at thewall together
with the vanishing radial and azimuthal velocities far above the disk.

The fluid is assumed to be Newtonian, viscous and electrically
conducting. The external uniform magnetic field B is applied
perpendicular to the surface of the disk and has a constant magnetic
flux density B0which is assumedunchanged by taking smallmagnetic
Reynolds number Rm ¼ sml2U, much smaller than the Reynolds
number of the fluid, which is the case for several practical situations
and s the electrical conductivity of the fluid. Thus, the applied
magnetic field is unaffected by the effect of the motion of the con-
ducting fluid, due to the lowmagnetic Reynolds number assumption.
Whereas, the effect of the magnetic field on the hydrodynamic
properties of the fluidmotionmanifests itself in the form J� B on the
right hand side of the momentum equations (2). This is known as,
the Lorentz force, the components of whose can be evaluated as
M(eu, ev, 0) for a normal electric field with M the magnetic interac-
tion parameter positive and defined by M ¼ ðsB20Þ=rU. It is further
assumed that there are no radial or azimuthal currents influencing the
motion of the fluid flow under consideration. E is the electric field
which results from charge separation and is in the z-direction. It
should be noticed that the electric field does not influence themotion.

In addition, instead of a constant viscosity of the fluid, we
assume that the viscosity depends on the temperature, that is
m ¼ 1=1þ 3ðT � TNÞ=ðTw � TNÞ as in the works of [15,27]. 3 is
termed the viscosity variation parameter. All other material functions
are treatedas constant.However, it is knownthat viscositymaychange
significantly with the temperature and therefore viscosity variations
should be taken into consideration to accurately resolve the flow field,
as is the case for the convection problems, see for instance [22,21].

The dimensionless mean flow velocities, pressure and temper-
ature distributions are given by von Karman's exact self-similar
solution of the NaviereStokes equations for the steady laminar flow
in the case of nonconducting fluid. A similar argument holds here
for the conducting flow equations, too. Because the boundary layer
thickness is of order of magnitude R�1, the steady incompressible
boundary layer flow over a rotating disk evolves along a boundary
layer coordinate of order unity, defined by Z¼ Rz. Consequently, the
mean flow quantities take the form,

ðu; v;wÞ ¼ �
rFðt; ZÞ; rGðt; ZÞ;1

R
Hðt; ZÞ�;

ðp; TÞ ¼
�

1
R2

Pðt; ZÞ; TN þ ðTw � TNÞqðt; ZÞ
�
;

(9)

where the similarity functions F, G, H and q satisfy the following
ordinary differential equations

vF
vt

� �
FF 0

�0 þ F2 � G2 þ F 0H þMF ¼ 0;

vG
vt

� �
FG0�0 þ 2FGþ G0H þMG ¼ 0;

vP
vt

� �
FH0�0 þ P0 þ H0H ¼ 0;

2F þ H0 ¼ 0;

vq

vt
� 1
Pr
q00 þ Hq0 � EcF½F 02 þ G02� � EcM½F2 þ G2� ¼ 0:

(10)
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The last two terms in the last equation in system (10) stem from the
viscous dissipation and Joule heating effects, respectively. Moreover,
a prime denotes derivative with respect to Z, F ¼ 1=1þ 3q and the
boundary conditions appropriate to the flow geometry for all time
t are given as,

F ¼ G� 1 ¼ H ¼ q� 1 ¼ 0; at Z ¼ 0;
F ¼ G ¼ q ¼ 0; as Z/N:

(11)

System is also supplemented with the subsequent initial values
valid for all Z,

F ¼ G ¼ H ¼ q ¼ 0; at t ¼ 0: (12)

It should be noticed that, as stated before, a discontinuity is present
between initial values and boundary conditions in (11) and (12).
A nonsimilar counterpart of the system (10)e(12)was obtained in [15]
using a transformation similar to (2). However, the nonsimilarity
equations (see equations (11e15) in [15]) get complicated as compared
to the system obtained here, which is more convenient in terms of
a numerical treatment.

Upon solutionof themeanflowquantities from the system(10)e(12),
the skin friction coefficients, the torque and the rate of heat transfer
to the surface, which are of principal physical interest, can also be
calculated. The action of the viscosity in the fluid adjacent to the
disk sets up a tangential shear stress, which opposes the rotation of
the disk. As a consequence, it is necessary to provide a torque at the
shaft to maintain a steady rotation. To find the tangential shear
stress sq and radial shear stress sr, we apply the Newtonian
formulae,

sq ¼
	
m

�
vv

vz
þ 1

r
vw
vq

�
����z¼0
¼ U

R
1þ 3

G0ð0Þ;

sr ¼
	
m

�
vu
vz

þ vw
vr

�
����z¼0
¼ U

R
1þ 3

F 0ð0Þ:
(13)

The rate of heat transfer from the disk surface to the fluid is
computed by the application of Fourier's law as given below,

q ¼ �k
vT
vz

jz¼0 ¼ �Rq0ð0Þ; (14)

from which the normalized Nusselt number can be obtained.
Therefore, in what follows we numerically compute F0(0), G0(0) and
q0(0) to understand the underlying physics of the problem.
4. Results and discussion

The numerical scheme described in Section 2 was made use for
the resolution of the velocity and temperature fields from the
system of equations (10)e(12), after mapping the computational
domain [0, Zmax] onto h ˛ [e1, 1] via the linear transformation
h ¼ �1þ 2ðZ=ZmaxÞ. Sufficient number of Gauss collocation points
were taken together with the proper choice of a large distance Zmax

above the surface of the disk in order to make sure that the solu-
tions obtained are independent of the parameters involved.
Numerical simulations are carried out for the motion of a fluid
Table 1
The values of F 0(0), G0(0), H(N) and q0(0) ranging from 3 ¼ 0 to 3 ¼ 6 for the nonmagnet

3 F 0(0)1 G0(0)1 H(N)1 q0(0)1

0 0.510232 �0.615922 �0.884473 �0.3285
2 0.883388 �1.109708 �0.286650 �0.5950
4 1.140804 �1.421316 �0.249492 �0.4487
6 1.350172 �1.670884 �0.221672 �0.3682
having Prandtl number Pr ¼ 1 for an ideal flow and Pr ¼ 0.72 for air
with a variety of viscosity variation parameter 3 and magnetic
interaction parameterM. Time progression of the unsteady velocity
profiles as well as radial and tangential shear stresses, vertical
suction velocity and the rate of heat transfer at the disk surface are
presented against the time.

Numerical values of F0(0), G0(0), H(N) and q0(0) for the
nonmagnetic flow corresponding to several values of 3 are pre-
sented in Table 1. The computations are for Pr ¼ 0.72 without
the viscous dissipation effects. The tabulated values were obtained
from the converged large time limit of time-dependent flow as well
as the corresponding steady state flow. These are compared
with those steady state calculations of [27] for the fixed collocation
numbers N ¼ 64 and Zmax ¼ 20. An excellent agreement can be
observed, pointing to the achievement of our numerical procedure
without any numerical difficulties as compared to the finite-
difference techniques for the flow considered.

Starting from the zero initial state, the ideal flow over a disk
evolves impulsively by a sudden action of rotation of the disk and as
time passes the flow settles down to a steady state. This action of
the fluid flow is shown in Fig. 1aed for a nonmagnetic disk and in
Fig. 2aed for amagnetic (M¼ 1)disk respectivelywithout the viscous
dissipation and Joule heating effects. Figures are displayed for the
time development of the flow quantities by a time stepDt¼ 0.05, but
taken at a snapshot of t ¼ 0.5. The sufficiently large time solution as
well as the steady solution are shown by the dot-dashed curves.
Figures show how the impulsive motion ends up with a steady state
which were calculated by ignoring the time derivative terms in
equations (10)e(12). The success of the devised numericalmethod in
capturing the steady state solution by assigning larger time steps is
also possible (though not demonstrated here) due to its uncondi-
tional stability. It is further noticeable from the figure that the
circumferential velocity attains its steady state quickest as compared
to the other physical variables. It is no surprising to witness that the
magnetic field helps the velocities to reach their asymptotic limit
faster, whereas it delays the attendance for the temperature field due
to the well-known increasing temperature impact of magnetic field.
It can also be observed from Figs.1 and 2aed that the physical steady
state is reached in a self-similar manner.

We demonstrate in Figs. 3 and 4aed the time development of F0

(0), eG0(0), H(N) and eq0(0), respectively for the nonmagnetic and
magnetic cases (M ¼ 1) with Ec ¼ 0, which are closely related to the
radial skin friction, azimuthal skin friction (also torque), axial
velocity at infinity and the local rate of heat transfer for Pr¼ 0.72 and
all computedwith a step size of dt¼ 0.01. The steady state values are
also shown by the broken lines in the figure. It can again be seen that
the method successfully generates the steady state values of the
physically important parameters, the fastest for the case of tangen-
tial skin frictions consistent with Figs. 1 and 2. Figs. 3 and 4aed
demonstrate that increasing the magnetic field strength decreases
the heat transfer rates from the surface of the disk. Moreover, an
increase in the viscosity variation parameter 3 is associated with the
enhancement of the radial skin friction coefficient F0(0) and vertical
wall suctionH(N), a reverse effect is observed for the azimuthal skin
friction coefficient and heat transfer. Thus wemay conclude that the
physical effect of viscosity parameter on the skin friction is twofold.
ic flow case. 1 and 2 respectively refer to our results and those of [27].

F 0(0)2 G0(0)2 H(N)2 q0(0)2

74 0.5102 �0.6159 �0.8844 �0.3285
32 0.8833 �1.1097 �0.2866 �0.5950
58 1.1408 �1.4213 �0.2494 �0.4487
88 1.3501 �1.6708 �0.2216 �0.3682
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Fig. 1. The time progression of basic flow quantities for the rotating disk flow are shown for a nonmagnetic and constant viscosity case with Ec ¼ 0 respectively in (a) the radial
velocity profiles, (b) the circumferential velocity profiles, (c) the wall normal velocity profiles and (d) the temperature profiles. The snapshots are given at 0.5 increments in time.
The dot-dashed curves correspond to the large time limit as well as the steady solution.
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(d) eq0(0). A dashed line corresponds to the steady state value.
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Influences of viscous dissipation and Joule heating terms are
shown finally in Fig. 5aed on the considered flow and heat transfer
characteristics for the selected parameters M ¼ 1 and 3 ¼ 2 for
various values of Ec. It is seen that influences are more profound on
the temperature profiles as compared to the velocityfield. Increasing
Ec results in an increase in both the axial velocity and the azimuthal
skin friction parameter, whereas it results in a decrease in both the
radial skin friction parameter and the rate of heat transfer. On
the other hand, just an opposite scenario takes place for values of Ec
decreasing. Thus, we conclude that the inclusion of viscous dissi-
pation and Joule heating in the energy equation can significantly
alter the physical character of the flow quantities and heat transfer.

5. Conclusions

The three-dimensional unsteadymagnetohydrodynamic boundary
layer flow due to a rotating disk with the viscous dissipation and
Joule heating also in effect has been considered in the presentwork.
Opposite to the finite-difference techniques more often used in the
literature, a better numerical integration scheme has beenproposed
here. The method is based on the spectral Chebyshev collocation
discretization along the coordinate normal to the fluid flowmotion
and Euler implicit forward time discretization in time, known also
the fully implicit time-steppingmethod. The electrically conducting
mean velocity and temperature fields, under the influence
of a temperature-dependent viscosity, approaching their steady
states have been successfully computed with this method. We have
presented results to illustrate theflowcharacteristics for the velocity
and temperature fields as well as the skin friction and rate of heat
transfer, and showhowtheflowfields are influencedby thematerial
parameters of the flow problem.

The presented fully implicit spectral technique can resolve the
discontinuities occurring due to the different initial and boundary
conditions in an unsteadyflowmotion. Using the numericalmethod,
the incompressible, viscous, laminar and time-dependent hydro-
magnetic three-dimensional swirling conducting fluid flow over
a rotating disk subject to a variable property of viscosity has been
solved. The viscous dissipation and Joule heating terms have also
been retained in the energy equations. Starting from zero initial
solutions and advancing in time, the method successfully generates
the velocity and temperature distributions influenced by the
existence of a magnetic field of the other parameters considered
and evolve into their steady state counterparts after a sufficient
time past. The numerical results have been initially validated by
comparing them with the available results in the literature in the
nonmagnetic and steady state case without the viscous dissipation
and Joule heating impacts. Excellent agreements have been found for
all the parameters of physical importance. The torque, shear stresses,
axial suction velocity and heat transfer rate, which are of funda-
mental importance in view of physics, have next been calculated
with varying magnetic interaction and viscosity variation parame-
ters aswell as Prandtl and Eckert numbers. Increasingmagnetic field
strength decreases the wall shear stress, rate of heat transfer and
hence the magnetic field significantly controls the flow and heat
characteristics. Results have also shown that the rate of heat transfer
is sensitive to the physical parameters under consideration, and all
other parameters fixed under the influence of viscous dissipation,
decreasing the Eckert number has been found to enhance the rate of
heat transfer, with an opposite effect for increasing Eckert numbers.
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